MakeItFrom.com
Menu (ESC)

ACI-ASTM CK20 Steel vs. EN 1.4931 Steel

Both ACI-ASTM CK20 steel and EN 1.4931 steel are iron alloys. They have 66% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CK20 steel and the bottom bar is EN 1.4931 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
240
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 37
17
Fatigue Strength, MPa 220
410
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Tensile Strength: Ultimate (UTS), MPa 530
810
Tensile Strength: Yield (Proof), MPa 260
620

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Mechanical, °C 1100
600
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 14
24
Thermal Expansion, µm/m-K 15
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 25
8.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.4
2.9
Embodied Energy, MJ/kg 62
42
Embodied Water, L/kg 190
100

Common Calculations

PREN (Pitting Resistance) 26
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
130
Resilience: Unit (Modulus of Resilience), kJ/m3 170
970
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
29
Strength to Weight: Bending, points 19
25
Thermal Diffusivity, mm2/s 3.7
6.5
Thermal Shock Resistance, points 13
22

Alloy Composition

Carbon (C), % 0 to 0.2
0.2 to 0.26
Chromium (Cr), % 23 to 27
11.3 to 12.2
Iron (Fe), % 46.7 to 58
83.2 to 86.8
Manganese (Mn), % 0 to 2.0
0.5 to 0.8
Molybdenum (Mo), % 0 to 0.5
1.0 to 1.2
Nickel (Ni), % 19 to 22
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 2.0
0 to 0.4
Sulfur (S), % 0 to 0.040
0 to 0.020
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0.25 to 0.35