MakeItFrom.com
Menu (ESC)

AISI 201LN Stainless Steel vs. Grade 24 Titanium

AISI 201LN stainless steel belongs to the iron alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 201LN stainless steel and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 25 to 51
11
Fatigue Strength, MPa 340 to 540
550
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Shear Strength, MPa 530 to 680
610
Tensile Strength: Ultimate (UTS), MPa 740 to 1060
1010
Tensile Strength: Yield (Proof), MPa 350 to 770
940

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 880
340
Melting Completion (Liquidus), °C 1410
1610
Melting Onset (Solidus), °C 1370
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 15
7.1
Thermal Expansion, µm/m-K 17
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.0

Otherwise Unclassified Properties

Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.6
43
Embodied Energy, MJ/kg 38
710
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230 to 310
110
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 1520
4160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 27 to 38
63
Strength to Weight: Bending, points 24 to 30
50
Thermal Diffusivity, mm2/s 4.0
2.9
Thermal Shock Resistance, points 16 to 23
72

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 16 to 17.5
0
Copper (Cu), % 0 to 1.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 67.9 to 73.5
0 to 0.4
Manganese (Mn), % 6.4 to 7.5
0
Nickel (Ni), % 4.0 to 5.0
0
Nitrogen (N), % 0.1 to 0.25
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4