MakeItFrom.com
Menu (ESC)

AISI 202 Stainless Steel vs. AISI 415 Stainless Steel

Both AISI 202 stainless steel and AISI 415 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 202 stainless steel and the bottom bar is AISI 415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 300
260
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 14 to 45
17
Fatigue Strength, MPa 290 to 330
430
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 490 to 590
550
Tensile Strength: Ultimate (UTS), MPa 700 to 980
900
Tensile Strength: Yield (Proof), MPa 310 to 580
700

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 410
390
Maximum Temperature: Mechanical, °C 910
780
Melting Completion (Liquidus), °C 1400
1450
Melting Onset (Solidus), °C 1360
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
24
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 13
11
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.5
Embodied Energy, MJ/kg 40
35
Embodied Water, L/kg 150
110

Common Calculations

PREN (Pitting Resistance) 20
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
140
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 840
1250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25 to 35
32
Strength to Weight: Bending, points 23 to 29
26
Thermal Diffusivity, mm2/s 4.0
6.4
Thermal Shock Resistance, points 15 to 21
33

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.050
Chromium (Cr), % 17 to 19
11.5 to 14
Iron (Fe), % 63.5 to 71.5
77.8 to 84
Manganese (Mn), % 7.5 to 10
0.5 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 4.0 to 6.0
3.5 to 5.5
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.060
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030