MakeItFrom.com
Menu (ESC)

AISI 310MoLN Stainless Steel vs. EN 1.4988 Stainless Steel

Both AISI 310MoLN stainless steel and EN 1.4988 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 310MoLN stainless steel and the bottom bar is EN 1.4988 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
34
Fatigue Strength, MPa 210
230
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
77
Shear Strength, MPa 400
430
Tensile Strength: Ultimate (UTS), MPa 610
640
Tensile Strength: Yield (Proof), MPa 290
290

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 450
520
Maximum Temperature: Mechanical, °C 1100
920
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 14
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
23
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 5.0
6.0
Embodied Energy, MJ/kg 70
89
Embodied Water, L/kg 200
150

Common Calculations

PREN (Pitting Resistance) 34
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
180
Resilience: Unit (Modulus of Resilience), kJ/m3 200
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
23
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 3.7
4.0
Thermal Shock Resistance, points 14
14

Alloy Composition

Carbon (C), % 0 to 0.020
0.040 to 0.1
Chromium (Cr), % 24 to 26
15.5 to 17.5
Iron (Fe), % 45.2 to 53.8
62.1 to 69.5
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 1.6 to 2.6
1.1 to 1.5
Nickel (Ni), % 20.5 to 23.5
12.5 to 14.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0.090 to 0.15
0.060 to 0.14
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 0.5
0.3 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.015
Vanadium (V), % 0
0.6 to 0.85