MakeItFrom.com
Menu (ESC)

AISI 310MoLN Stainless Steel vs. S44537 Stainless Steel

Both AISI 310MoLN stainless steel and S44537 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 72% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 310MoLN stainless steel and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
21
Fatigue Strength, MPa 210
230
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 84
80
Shear Modulus, GPa 80
79
Shear Strength, MPa 400
320
Tensile Strength: Ultimate (UTS), MPa 610
510
Tensile Strength: Yield (Proof), MPa 290
360

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 450
530
Maximum Temperature: Mechanical, °C 1100
1000
Melting Completion (Liquidus), °C 1420
1480
Melting Onset (Solidus), °C 1380
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 14
21
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 28
19
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 5.0
3.4
Embodied Energy, MJ/kg 70
50
Embodied Water, L/kg 200
140

Common Calculations

PREN (Pitting Resistance) 34
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
95
Resilience: Unit (Modulus of Resilience), kJ/m3 200
320
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 3.7
5.6
Thermal Shock Resistance, points 14
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.020
0 to 0.030
Chromium (Cr), % 24 to 26
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 45.2 to 53.8
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0 to 2.0
0 to 0.8
Molybdenum (Mo), % 1.6 to 2.6
0
Nickel (Ni), % 20.5 to 23.5
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0.090 to 0.15
0 to 0.040
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0 to 0.5
0.1 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.0060
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0