MakeItFrom.com
Menu (ESC)

AISI 316 Stainless Steel vs. AISI 422 Stainless Steel

Both AISI 316 stainless steel and AISI 422 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 316 stainless steel and the bottom bar is AISI 422 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 360
260 to 330
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 8.0 to 55
15 to 17
Fatigue Strength, MPa 210 to 430
410 to 500
Poisson's Ratio 0.28
0.28
Reduction in Area, % 80
34 to 40
Shear Modulus, GPa 78
76
Shear Strength, MPa 350 to 690
560 to 660
Tensile Strength: Ultimate (UTS), MPa 520 to 1180
910 to 1080
Tensile Strength: Yield (Proof), MPa 230 to 850
670 to 870

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 410
380
Maximum Temperature: Mechanical, °C 590
650
Melting Completion (Liquidus), °C 1400
1480
Melting Onset (Solidus), °C 1380
1470
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
24
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
4.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
11
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 3.9
3.1
Embodied Energy, MJ/kg 53
44
Embodied Water, L/kg 150
100

Common Calculations

PREN (Pitting Resistance) 26
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 85 to 260
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 1820
1140 to 1910
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18 to 41
32 to 38
Strength to Weight: Bending, points 18 to 31
26 to 30
Thermal Diffusivity, mm2/s 4.1
6.4
Thermal Shock Resistance, points 11 to 26
33 to 39

Alloy Composition

Carbon (C), % 0 to 0.080
0.2 to 0.25
Chromium (Cr), % 16 to 18
11 to 12.5
Iron (Fe), % 62 to 72
81.9 to 85.8
Manganese (Mn), % 0 to 2.0
0.5 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0.9 to 1.3
Nickel (Ni), % 10 to 14
0.5 to 1.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.025
Tungsten (W), % 0
0.9 to 1.3
Vanadium (V), % 0
0.2 to 0.3