MakeItFrom.com
Menu (ESC)

AISI 316N Stainless Steel vs. S32654 Stainless Steel

Both AISI 316N stainless steel and S32654 stainless steel are iron alloys. They have 75% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 316N stainless steel and the bottom bar is S32654 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 350
220
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 9.0 to 39
45
Fatigue Strength, MPa 230 to 450
450
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
82
Shear Strength, MPa 420 to 690
590
Tensile Strength: Ultimate (UTS), MPa 620 to 1160
850
Tensile Strength: Yield (Proof), MPa 270 to 870
490

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Maximum Temperature: Corrosion, °C 410
440
Maximum Temperature: Mechanical, °C 940
1100
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 15
11
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
34
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 3.9
6.4
Embodied Energy, MJ/kg 53
87
Embodied Water, L/kg 150
220

Common Calculations

PREN (Pitting Resistance) 27
57
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 230
330
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1880
570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22 to 41
29
Strength to Weight: Bending, points 20 to 31
25
Thermal Diffusivity, mm2/s 4.1
2.9
Thermal Shock Resistance, points 14 to 26
19

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.020
Chromium (Cr), % 16 to 18
24 to 25
Copper (Cu), % 0
0.3 to 0.6
Iron (Fe), % 61.9 to 71.9
38.3 to 45.3
Manganese (Mn), % 0 to 2.0
2.0 to 4.0
Molybdenum (Mo), % 2.0 to 3.0
7.0 to 8.0
Nickel (Ni), % 10 to 14
21 to 23
Nitrogen (N), % 0.1 to 0.16
0.45 to 0.55
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.0050