MakeItFrom.com
Menu (ESC)

AISI 403 Stainless Steel vs. ASTM A369 Grade FP92

Both AISI 403 stainless steel and ASTM A369 grade FP92 are iron alloys. They have a very high 97% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 403 stainless steel and the bottom bar is ASTM A369 grade FP92.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 240
210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16 to 25
19
Fatigue Strength, MPa 200 to 340
330
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 340 to 480
440
Tensile Strength: Ultimate (UTS), MPa 530 to 780
710
Tensile Strength: Yield (Proof), MPa 280 to 570
490

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Maximum Temperature: Mechanical, °C 740
590
Melting Completion (Liquidus), °C 1450
1490
Melting Onset (Solidus), °C 1400
1450
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 28
26
Thermal Expansion, µm/m-K 9.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
10

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
11
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.9
2.8
Embodied Energy, MJ/kg 27
40
Embodied Water, L/kg 99
89

Common Calculations

PREN (Pitting Resistance) 12
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 840
620
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19 to 28
25
Strength to Weight: Bending, points 19 to 24
22
Thermal Diffusivity, mm2/s 7.6
6.9
Thermal Shock Resistance, points 20 to 29
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.15
0.070 to 0.13
Chromium (Cr), % 11.5 to 13
8.5 to 9.5
Iron (Fe), % 84.7 to 88.5
85.8 to 89.1
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0 to 0.6
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010