MakeItFrom.com
Menu (ESC)

AISI 403 Stainless Steel vs. EN 1.0536 Steel

Both AISI 403 stainless steel and EN 1.0536 steel are iron alloys. They have 87% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 403 stainless steel and the bottom bar is EN 1.0536 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 240
210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16 to 25
18
Fatigue Strength, MPa 200 to 340
340
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 340 to 480
440
Tensile Strength: Ultimate (UTS), MPa 530 to 780
710
Tensile Strength: Yield (Proof), MPa 280 to 570
510

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 740
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 28
51
Thermal Expansion, µm/m-K 9.9
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.9
1.7
Embodied Energy, MJ/kg 27
24
Embodied Water, L/kg 99
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 840
690
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19 to 28
25
Strength to Weight: Bending, points 19 to 24
23
Thermal Diffusivity, mm2/s 7.6
14
Thermal Shock Resistance, points 20 to 29
22

Alloy Composition

Aluminum (Al), % 0
0.010 to 0.050
Carbon (C), % 0 to 0.15
0.16 to 0.22
Chromium (Cr), % 11.5 to 13
0
Iron (Fe), % 84.7 to 88.5
97.2 to 98.4
Manganese (Mn), % 0 to 1.0
1.3 to 1.7
Nickel (Ni), % 0 to 0.6
0
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 0.5
0.1 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.035
Vanadium (V), % 0
0.080 to 0.15