MakeItFrom.com
Menu (ESC)

AISI 403 Stainless Steel vs. EN 1.4630 Stainless Steel

Both AISI 403 stainless steel and EN 1.4630 stainless steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 403 stainless steel and the bottom bar is EN 1.4630 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16 to 25
23
Fatigue Strength, MPa 200 to 340
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 340 to 480
300
Tensile Strength: Ultimate (UTS), MPa 530 to 780
480
Tensile Strength: Yield (Proof), MPa 280 to 570
250

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 390
520
Maximum Temperature: Mechanical, °C 740
800
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 28
28
Thermal Expansion, µm/m-K 9.9
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
9.5
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.9
2.5
Embodied Energy, MJ/kg 27
36
Embodied Water, L/kg 99
120

Common Calculations

PREN (Pitting Resistance) 12
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
92
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 840
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19 to 28
17
Strength to Weight: Bending, points 19 to 24
18
Thermal Diffusivity, mm2/s 7.6
7.5
Thermal Shock Resistance, points 20 to 29
17

Alloy Composition

Aluminum (Al), % 0
0 to 1.5
Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 11.5 to 13
13 to 16
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 84.7 to 88.5
77.1 to 86.7
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.6
0 to 0.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 0.5
0.2 to 1.5
Sulfur (S), % 0 to 0.030
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.8