MakeItFrom.com
Menu (ESC)

AISI 403 Stainless Steel vs. C19400 Copper

AISI 403 stainless steel belongs to the iron alloys classification, while C19400 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 403 stainless steel and the bottom bar is C19400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 16 to 25
2.3 to 37
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Shear Strength, MPa 340 to 480
210 to 300
Tensile Strength: Ultimate (UTS), MPa 530 to 780
310 to 630
Tensile Strength: Yield (Proof), MPa 280 to 570
98 to 520

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 740
200
Melting Completion (Liquidus), °C 1450
1090
Melting Onset (Solidus), °C 1400
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 28
260
Thermal Expansion, µm/m-K 9.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
58 to 68
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
58 to 69

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
30
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.9
2.6
Embodied Energy, MJ/kg 27
40
Embodied Water, L/kg 99
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
5.5 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 840
41 to 1140
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19 to 28
9.7 to 20
Strength to Weight: Bending, points 19 to 24
11 to 18
Thermal Diffusivity, mm2/s 7.6
75
Thermal Shock Resistance, points 20 to 29
11 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 13
0
Copper (Cu), % 0
96.8 to 97.8
Iron (Fe), % 84.7 to 88.5
2.1 to 2.6
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.6
0
Phosphorus (P), % 0 to 0.040
0.015 to 0.15
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.2