MakeItFrom.com
Menu (ESC)

AISI 403 Stainless Steel vs. N06035 Nickel

AISI 403 stainless steel belongs to the iron alloys classification, while N06035 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AISI 403 stainless steel and the bottom bar is N06035 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 16 to 25
34
Fatigue Strength, MPa 200 to 340
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
84
Shear Strength, MPa 340 to 480
440
Tensile Strength: Ultimate (UTS), MPa 530 to 780
660
Tensile Strength: Yield (Proof), MPa 280 to 570
270

Thermal Properties

Latent Heat of Fusion, J/g 270
340
Maximum Temperature: Mechanical, °C 740
1030
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
450
Thermal Expansion, µm/m-K 9.9
13

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
60
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 1.9
10
Embodied Energy, MJ/kg 27
140
Embodied Water, L/kg 99
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 840
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19 to 28
22
Strength to Weight: Bending, points 19 to 24
20
Thermal Shock Resistance, points 20 to 29
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0 to 0.15
0 to 0.050
Chromium (Cr), % 11.5 to 13
32.3 to 34.3
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 84.7 to 88.5
0 to 2.0
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 0
7.6 to 9.0
Nickel (Ni), % 0 to 0.6
51.1 to 60.2
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.015
Tungsten (W), % 0
0 to 0.6
Vanadium (V), % 0
0 to 0.2