MakeItFrom.com
Menu (ESC)

AISI 405 Stainless Steel vs. EN 1.4565 Stainless Steel

Both AISI 405 stainless steel and EN 1.4565 stainless steel are iron alloys. They have 60% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 405 stainless steel and the bottom bar is EN 1.4565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 22
35
Fatigue Strength, MPa 130
380
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
81
Shear Strength, MPa 300
590
Tensile Strength: Ultimate (UTS), MPa 470
880
Tensile Strength: Yield (Proof), MPa 200
480

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Corrosion, °C 390
460
Maximum Temperature: Mechanical, °C 820
1100
Melting Completion (Liquidus), °C 1530
1420
Melting Onset (Solidus), °C 1480
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
12
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
28
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.0
5.4
Embodied Energy, MJ/kg 28
74
Embodied Water, L/kg 100
210

Common Calculations

PREN (Pitting Resistance) 13
47
Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
260
Resilience: Unit (Modulus of Resilience), kJ/m3 100
550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
31
Strength to Weight: Bending, points 17
26
Thermal Diffusivity, mm2/s 8.1
3.2
Thermal Shock Resistance, points 16
21

Alloy Composition

Aluminum (Al), % 0.1 to 0.3
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 11.5 to 14.5
24 to 26
Iron (Fe), % 82.5 to 88.4
41.2 to 50.7
Manganese (Mn), % 0 to 1.0
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.6
16 to 19
Niobium (Nb), % 0
0 to 0.15
Nitrogen (N), % 0
0.3 to 0.6
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015