MakeItFrom.com
Menu (ESC)

AISI 405 Stainless Steel vs. EN 1.4912 Stainless Steel

Both AISI 405 stainless steel and EN 1.4912 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 405 stainless steel and the bottom bar is EN 1.4912 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
40
Fatigue Strength, MPa 130
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 300
420
Tensile Strength: Ultimate (UTS), MPa 470
610
Tensile Strength: Yield (Proof), MPa 200
230

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 390
520
Maximum Temperature: Mechanical, °C 820
940
Melting Completion (Liquidus), °C 1530
1430
Melting Onset (Solidus), °C 1480
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 30
16
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
20
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
3.8
Embodied Energy, MJ/kg 28
55
Embodied Water, L/kg 100
140

Common Calculations

PREN (Pitting Resistance) 13
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
190
Resilience: Unit (Modulus of Resilience), kJ/m3 100
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 8.1
4.2
Thermal Shock Resistance, points 16
14

Alloy Composition

Aluminum (Al), % 0.1 to 0.3
0
Carbon (C), % 0 to 0.080
0.040 to 0.1
Chromium (Cr), % 11.5 to 14.5
17 to 19
Iron (Fe), % 82.5 to 88.4
64.6 to 73.6
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 0 to 0.6
9.0 to 12
Niobium (Nb), % 0
0.4 to 1.2
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015