MakeItFrom.com
Menu (ESC)

AISI 410 Stainless Steel vs. 6061 Aluminum

AISI 410 stainless steel belongs to the iron alloys classification, while 6061 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 410 stainless steel and the bottom bar is 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 16 to 22
3.4 to 20
Fatigue Strength, MPa 190 to 350
58 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 330 to 470
84 to 210
Tensile Strength: Ultimate (UTS), MPa 520 to 770
130 to 410
Tensile Strength: Yield (Proof), MPa 290 to 580
76 to 370

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 710
170
Melting Completion (Liquidus), °C 1530
650
Melting Onset (Solidus), °C 1480
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 30
170
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
43
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
140

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Calomel Potential, mV -150
-740
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 1.9
8.3
Embodied Energy, MJ/kg 27
150
Embodied Water, L/kg 100
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97 to 110
3.8 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 860
42 to 1000
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 19 to 28
13 to 42
Strength to Weight: Bending, points 19 to 24
21 to 45
Thermal Diffusivity, mm2/s 8.1
68
Thermal Shock Resistance, points 18 to 26
5.7 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
95.9 to 98.6
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11.5 to 13.5
0.040 to 0.35
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 83.5 to 88.4
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 1.0
0 to 0.15
Nickel (Ni), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.4 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants