MakeItFrom.com
Menu (ESC)

AISI 410 Stainless Steel vs. EN 1.6553 Steel

Both AISI 410 stainless steel and EN 1.6553 steel are iron alloys. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 410 stainless steel and the bottom bar is EN 1.6553 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 240
210 to 240
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16 to 22
19 to 21
Fatigue Strength, MPa 190 to 350
330 to 460
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 520 to 770
710 to 800
Tensile Strength: Yield (Proof), MPa 290 to 580
470 to 670

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 710
420
Melting Completion (Liquidus), °C 1530
1460
Melting Onset (Solidus), °C 1480
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
39
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
2.7
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 1.9
1.6
Embodied Energy, MJ/kg 27
21
Embodied Water, L/kg 100
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97 to 110
130 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 860
600 to 1190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19 to 28
25 to 28
Strength to Weight: Bending, points 19 to 24
23 to 24
Thermal Diffusivity, mm2/s 8.1
10
Thermal Shock Resistance, points 18 to 26
21 to 23

Alloy Composition

Carbon (C), % 0.080 to 0.15
0.23 to 0.28
Chromium (Cr), % 11.5 to 13.5
0.4 to 0.8
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 83.5 to 88.4
95.6 to 98.2
Manganese (Mn), % 0 to 1.0
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.3
Nickel (Ni), % 0 to 0.75
0.4 to 0.8
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.025
Vanadium (V), % 0
0 to 0.030

Comparable Variants