MakeItFrom.com
Menu (ESC)

AISI 410 Stainless Steel vs. Grade 30 Titanium

AISI 410 stainless steel belongs to the iron alloys classification, while grade 30 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 410 stainless steel and the bottom bar is grade 30 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 16 to 22
23
Fatigue Strength, MPa 190 to 350
250
Poisson's Ratio 0.28
0.32
Reduction in Area, % 47 to 48
34
Shear Modulus, GPa 76
41
Shear Strength, MPa 330 to 470
240
Tensile Strength: Ultimate (UTS), MPa 520 to 770
390
Tensile Strength: Yield (Proof), MPa 290 to 580
350

Thermal Properties

Latent Heat of Fusion, J/g 270
420
Maximum Temperature: Mechanical, °C 710
320
Melting Completion (Liquidus), °C 1530
1660
Melting Onset (Solidus), °C 1480
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 30
21
Thermal Expansion, µm/m-K 11
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 1.9
36
Embodied Energy, MJ/kg 27
600
Embodied Water, L/kg 100
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97 to 110
86
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 860
590
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 19 to 28
24
Strength to Weight: Bending, points 19 to 24
26
Thermal Diffusivity, mm2/s 8.1
8.6
Thermal Shock Resistance, points 18 to 26
30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.080 to 0.15
0 to 0.080
Chromium (Cr), % 11.5 to 13.5
0
Cobalt (Co), % 0
0.2 to 0.8
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 83.5 to 88.4
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.75
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98 to 99.76
Residuals, % 0
0 to 0.4