MakeItFrom.com
Menu (ESC)

AISI 410 Stainless Steel vs. C68300 Brass

AISI 410 stainless steel belongs to the iron alloys classification, while C68300 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AISI 410 stainless steel and the bottom bar is C68300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 16 to 22
15
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Shear Strength, MPa 330 to 470
260
Tensile Strength: Ultimate (UTS), MPa 520 to 770
430
Tensile Strength: Yield (Proof), MPa 290 to 580
260

Thermal Properties

Latent Heat of Fusion, J/g 270
180
Maximum Temperature: Mechanical, °C 710
120
Melting Completion (Liquidus), °C 1530
900
Melting Onset (Solidus), °C 1480
890
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 30
120
Thermal Expansion, µm/m-K 11
20

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
23
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 1.9
2.8
Embodied Energy, MJ/kg 27
46
Embodied Water, L/kg 100
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97 to 110
56
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 860
330
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 19 to 28
15
Strength to Weight: Bending, points 19 to 24
16
Thermal Diffusivity, mm2/s 8.1
38
Thermal Shock Resistance, points 18 to 26
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Antimony (Sb), % 0
0.3 to 1.0
Cadmium (Cd), % 0
0 to 0.010
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0
59 to 63
Iron (Fe), % 83.5 to 88.4
0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.3 to 1.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.050 to 0.2
Zinc (Zn), % 0
34.2 to 40.4
Residuals, % 0
0 to 0.5