MakeItFrom.com
Menu (ESC)

AISI 414 Stainless Steel vs. C23000 Brass

AISI 414 stainless steel belongs to the iron alloys classification, while C23000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 414 stainless steel and the bottom bar is C23000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
2.9 to 47
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 550 to 590
220 to 340
Tensile Strength: Ultimate (UTS), MPa 900 to 960
280 to 590
Tensile Strength: Yield (Proof), MPa 700 to 790
83 to 480

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 750
170
Melting Completion (Liquidus), °C 1440
1030
Melting Onset (Solidus), °C 1400
990
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 25
160
Thermal Expansion, µm/m-K 10
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
39

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
28
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 2.1
2.6
Embodied Energy, MJ/kg 29
43
Embodied Water, L/kg 100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
6.2 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 1260 to 1590
31 to 1040
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32 to 34
8.9 to 19
Strength to Weight: Bending, points 27 to 28
11 to 18
Thermal Diffusivity, mm2/s 6.7
48
Thermal Shock Resistance, points 33 to 35
9.4 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0
84 to 86
Iron (Fe), % 81.8 to 87.3
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 1.3 to 2.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
13.7 to 16
Residuals, % 0
0 to 0.2