MakeItFrom.com
Menu (ESC)

AISI 414 Stainless Steel vs. C85400 Brass

AISI 414 stainless steel belongs to the iron alloys classification, while C85400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 414 stainless steel and the bottom bar is C85400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 17
23
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 900 to 960
220
Tensile Strength: Yield (Proof), MPa 700 to 790
85

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 750
130
Melting Completion (Liquidus), °C 1440
940
Melting Onset (Solidus), °C 1400
940
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 25
89
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
22

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
25
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.1
2.8
Embodied Energy, MJ/kg 29
46
Embodied Water, L/kg 100
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
40
Resilience: Unit (Modulus of Resilience), kJ/m3 1260 to 1590
35
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32 to 34
7.5
Strength to Weight: Bending, points 27 to 28
9.9
Thermal Diffusivity, mm2/s 6.7
28
Thermal Shock Resistance, points 33 to 35
7.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0
65 to 70
Iron (Fe), % 81.8 to 87.3
0 to 0.7
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 1.3 to 2.5
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
24 to 32
Residuals, % 0
0 to 1.1