MakeItFrom.com
Menu (ESC)

AISI 415 Stainless Steel vs. Grade 18 Titanium

AISI 415 stainless steel belongs to the iron alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 415 stainless steel and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17
11 to 17
Fatigue Strength, MPa 430
330 to 480
Poisson's Ratio 0.28
0.32
Reduction in Area, % 50
23
Shear Modulus, GPa 76
40
Shear Strength, MPa 550
420 to 590
Tensile Strength: Ultimate (UTS), MPa 900
690 to 980
Tensile Strength: Yield (Proof), MPa 700
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 780
330
Melting Completion (Liquidus), °C 1450
1640
Melting Onset (Solidus), °C 1400
1590
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 24
8.3
Thermal Expansion, µm/m-K 10
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.5
41
Embodied Energy, MJ/kg 35
670
Embodied Water, L/kg 110
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1250
1380 to 3110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 32
43 to 61
Strength to Weight: Bending, points 26
39 to 49
Thermal Diffusivity, mm2/s 6.4
3.4
Thermal Shock Resistance, points 33
47 to 67

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 11.5 to 14
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 77.8 to 84
0 to 0.25
Manganese (Mn), % 0.5 to 1.0
0
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4