MakeItFrom.com
Menu (ESC)

AISI 416 Stainless Steel vs. EN 1.4542 Stainless Steel

Both AISI 416 stainless steel and EN 1.4542 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 416 stainless steel and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 13 to 31
5.7 to 20
Fatigue Strength, MPa 230 to 340
370 to 640
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 340 to 480
550 to 860
Tensile Strength: Ultimate (UTS), MPa 510 to 800
880 to 1470
Tensile Strength: Yield (Proof), MPa 290 to 600
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 390
440
Maximum Temperature: Mechanical, °C 680
860
Melting Completion (Liquidus), °C 1530
1430
Melting Onset (Solidus), °C 1480
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
16
Thermal Expansion, µm/m-K 9.9
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
13
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 1.9
2.7
Embodied Energy, MJ/kg 27
39
Embodied Water, L/kg 100
130

Common Calculations

PREN (Pitting Resistance) 13
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 140
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 940
880 to 4360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18 to 29
31 to 52
Strength to Weight: Bending, points 18 to 25
26 to 37
Thermal Diffusivity, mm2/s 8.1
4.3
Thermal Shock Resistance, points 19 to 30
29 to 49

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.070
Chromium (Cr), % 12 to 14
15 to 17
Copper (Cu), % 0
3.0 to 5.0
Iron (Fe), % 83.2 to 87.9
69.6 to 79
Manganese (Mn), % 0 to 1.3
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0 to 0.060
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0.15 to 0.35
0 to 0.015