MakeItFrom.com
Menu (ESC)

AISI 416 Stainless Steel vs. EN AC-43300 Aluminum

AISI 416 stainless steel belongs to the iron alloys classification, while EN AC-43300 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 416 stainless steel and the bottom bar is EN AC-43300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230 to 320
91 to 94
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 13 to 31
3.4 to 6.7
Fatigue Strength, MPa 230 to 340
76 to 77
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 510 to 800
280 to 290
Tensile Strength: Yield (Proof), MPa 290 to 600
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 270
540
Maximum Temperature: Mechanical, °C 680
170
Melting Completion (Liquidus), °C 1530
600
Melting Onset (Solidus), °C 1480
590
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 30
140
Thermal Expansion, µm/m-K 9.9
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
40
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
140

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 7.7
2.5
Embodied Carbon, kg CO2/kg material 1.9
7.9
Embodied Energy, MJ/kg 27
150
Embodied Water, L/kg 100
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 140
9.1 to 17
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 940
300 to 370
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 18 to 29
31 to 32
Strength to Weight: Bending, points 18 to 25
37 to 38
Thermal Diffusivity, mm2/s 8.1
59
Thermal Shock Resistance, points 19 to 30
13 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
88.9 to 90.8
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 83.2 to 87.9
0 to 0.19
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 1.3
0 to 0.1
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
9.0 to 10
Sulfur (S), % 0.15 to 0.35
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1