MakeItFrom.com
Menu (ESC)

AISI 416 Stainless Steel vs. Grade 15 Titanium

AISI 416 stainless steel belongs to the iron alloys classification, while grade 15 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 416 stainless steel and the bottom bar is grade 15 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 13 to 31
20
Fatigue Strength, MPa 230 to 340
290
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
41
Shear Strength, MPa 340 to 480
340
Tensile Strength: Ultimate (UTS), MPa 510 to 800
540
Tensile Strength: Yield (Proof), MPa 290 to 600
430

Thermal Properties

Latent Heat of Fusion, J/g 270
420
Maximum Temperature: Mechanical, °C 680
320
Melting Completion (Liquidus), °C 1530
1660
Melting Onset (Solidus), °C 1480
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 30
21
Thermal Expansion, µm/m-K 9.9
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
37
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 1.9
32
Embodied Energy, MJ/kg 27
520
Embodied Water, L/kg 100
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 140
100
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 940
870
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 18 to 29
33
Strength to Weight: Bending, points 18 to 25
33
Thermal Diffusivity, mm2/s 8.1
8.4
Thermal Shock Resistance, points 19 to 30
41

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 12 to 14
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 83.2 to 87.9
0 to 0.3
Manganese (Mn), % 0 to 1.3
0
Nickel (Ni), % 0
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.060
0
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0.15 to 0.35
0
Titanium (Ti), % 0
98.2 to 99.56
Residuals, % 0
0 to 0.4