MakeItFrom.com
Menu (ESC)

AISI 416 Stainless Steel vs. S43940 Stainless Steel

Both AISI 416 stainless steel and S43940 stainless steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 416 stainless steel and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230 to 320
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 13 to 31
21
Fatigue Strength, MPa 230 to 340
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 340 to 480
310
Tensile Strength: Ultimate (UTS), MPa 510 to 800
490
Tensile Strength: Yield (Proof), MPa 290 to 600
280

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 390
540
Maximum Temperature: Mechanical, °C 680
890
Melting Completion (Liquidus), °C 1530
1440
Melting Onset (Solidus), °C 1480
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 30
25
Thermal Expansion, µm/m-K 9.9
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 1.9
2.6
Embodied Energy, MJ/kg 27
38
Embodied Water, L/kg 100
120

Common Calculations

PREN (Pitting Resistance) 13
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 140
86
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 940
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18 to 29
18
Strength to Weight: Bending, points 18 to 25
18
Thermal Diffusivity, mm2/s 8.1
6.8
Thermal Shock Resistance, points 19 to 30
18

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 12 to 14
17.5 to 18.5
Iron (Fe), % 83.2 to 87.9
78.2 to 82.1
Manganese (Mn), % 0 to 1.3
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.6
Phosphorus (P), % 0 to 0.060
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0.15 to 0.35
0 to 0.015
Titanium (Ti), % 0
0.1 to 0.6