MakeItFrom.com
Menu (ESC)

AISI 420 Stainless Steel vs. Grade 12 Titanium

AISI 420 stainless steel belongs to the iron alloys classification, while grade 12 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 420 stainless steel and the bottom bar is grade 12 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
170
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 8.0 to 15
21
Fatigue Strength, MPa 220 to 670
280
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
39
Shear Strength, MPa 420 to 1010
330
Tensile Strength: Ultimate (UTS), MPa 690 to 1720
530
Tensile Strength: Yield (Proof), MPa 380 to 1310
410

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 620
320
Melting Completion (Liquidus), °C 1510
1660
Melting Onset (Solidus), °C 1450
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 27
21
Thermal Expansion, µm/m-K 10
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
37
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.0
31
Embodied Energy, MJ/kg 28
500
Embodied Water, L/kg 100
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 4410
770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 25 to 62
32
Strength to Weight: Bending, points 22 to 41
32
Thermal Diffusivity, mm2/s 7.3
8.5
Thermal Shock Resistance, points 25 to 62
37

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.15 to 0.4
0 to 0.080
Chromium (Cr), % 12 to 14
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 82.3 to 87.9
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0.2 to 0.4
Nickel (Ni), % 0 to 0.75
0.6 to 0.9
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
97.6 to 99.2
Residuals, % 0
0 to 0.4