MakeItFrom.com
Menu (ESC)

AISI 434 Stainless Steel vs. C66900 Brass

AISI 434 stainless steel belongs to the iron alloys classification, while C66900 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 434 stainless steel and the bottom bar is C66900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 24
1.1 to 26
Poisson's Ratio 0.28
0.32
Rockwell B Hardness 77
65 to 100
Shear Modulus, GPa 78
45
Shear Strength, MPa 330
290 to 440
Tensile Strength: Ultimate (UTS), MPa 520
460 to 770
Tensile Strength: Yield (Proof), MPa 320
330 to 760

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 880
150
Melting Completion (Liquidus), °C 1510
860
Melting Onset (Solidus), °C 1430
850
Specific Heat Capacity, J/kg-K 480
400
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
3.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.4
2.8
Embodied Energy, MJ/kg 33
46
Embodied Water, L/kg 120
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
4.6 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 260
460 to 2450
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 19
15 to 26
Strength to Weight: Bending, points 18
16 to 23
Thermal Shock Resistance, points 19
14 to 23

Alloy Composition

Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
62.5 to 64.5
Iron (Fe), % 78.6 to 83.3
0 to 0.25
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
11.5 to 12.5
Molybdenum (Mo), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
22.5 to 26
Residuals, % 0
0 to 0.2