MakeItFrom.com
Menu (ESC)

AISI 434 Stainless Steel vs. C79600 Nickel Silver

AISI 434 stainless steel belongs to the iron alloys classification, while C79600 nickel silver belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 434 stainless steel and the bottom bar is C79600 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 24
15
Poisson's Ratio 0.28
0.3
Rockwell B Hardness 77
70
Shear Modulus, GPa 78
43
Shear Strength, MPa 330
290
Tensile Strength: Ultimate (UTS), MPa 520
480
Tensile Strength: Yield (Proof), MPa 320
300

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 880
130
Melting Completion (Liquidus), °C 1510
930
Melting Onset (Solidus), °C 1430
880
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 25
36
Thermal Expansion, µm/m-K 10
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.4
3.5
Embodied Energy, MJ/kg 33
57
Embodied Water, L/kg 120
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
63
Resilience: Unit (Modulus of Resilience), kJ/m3 260
400
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 19
17
Strength to Weight: Bending, points 18
17
Thermal Diffusivity, mm2/s 6.7
12
Thermal Shock Resistance, points 19
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
43.5 to 46.5
Iron (Fe), % 78.6 to 83.3
0
Lead (Pb), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 1.0
1.5 to 2.5
Molybdenum (Mo), % 0.75 to 1.3
0
Nickel (Ni), % 0
9.0 to 11
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
38.3 to 45.2
Residuals, % 0
0 to 0.5