MakeItFrom.com
Menu (ESC)

AISI 436 Stainless Steel vs. EN 1.0503 Steel

Both AISI 436 stainless steel and EN 1.0503 steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 436 stainless steel and the bottom bar is EN 1.0503 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
16
Fatigue Strength, MPa 190
210
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
72
Shear Strength, MPa 320
380
Tensile Strength: Ultimate (UTS), MPa 500
630
Tensile Strength: Yield (Proof), MPa 270
310

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 880
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
48
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
2.1
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 38
19
Embodied Water, L/kg 120
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
83
Resilience: Unit (Modulus of Resilience), kJ/m3 190
260
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
22
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 6.7
13
Thermal Shock Resistance, points 18
20

Alloy Composition

Carbon (C), % 0 to 0.12
0.42 to 0.5
Chromium (Cr), % 16 to 18
0 to 0.4
Iron (Fe), % 77.8 to 83.3
97.3 to 99.08
Manganese (Mn), % 0 to 1.0
0.5 to 0.8
Molybdenum (Mo), % 0.75 to 1.3
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0 to 0.8
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.045