MakeItFrom.com
Menu (ESC)

AISI 441 Stainless Steel vs. S41050 Stainless Steel

Both AISI 441 stainless steel and S41050 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 92% of their average alloy composition in common.

For each property being compared, the top bar is AISI 441 stainless steel and the bottom bar is S41050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23
25
Fatigue Strength, MPa 180
160
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 77
77
Shear Modulus, GPa 77
76
Shear Strength, MPa 300
300
Tensile Strength: Ultimate (UTS), MPa 470
470
Tensile Strength: Yield (Proof), MPa 270
230

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Corrosion, °C 550
390
Maximum Temperature: Mechanical, °C 910
720
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
27
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
7.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.9
Embodied Energy, MJ/kg 41
27
Embodied Water, L/kg 130
97

Common Calculations

PREN (Pitting Resistance) 19
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
98
Resilience: Unit (Modulus of Resilience), kJ/m3 190
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
17
Strength to Weight: Bending, points 17
17
Thermal Diffusivity, mm2/s 6.1
7.2
Thermal Shock Resistance, points 16
17

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.040
Chromium (Cr), % 17.5 to 19.5
10.5 to 12.5
Iron (Fe), % 76 to 82.2
84.2 to 88.9
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 1.0
0.6 to 1.1
Niobium (Nb), % 0.3 to 0.9
0
Nitrogen (N), % 0 to 0.030
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.1 to 0.5
0