MakeItFrom.com
Menu (ESC)

AISI 446 Stainless Steel vs. 2024 Aluminum

AISI 446 stainless steel belongs to the iron alloys classification, while 2024 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 446 stainless steel and the bottom bar is 2024 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 23
4.0 to 16
Fatigue Strength, MPa 200
90 to 180
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
27
Shear Strength, MPa 360
130 to 320
Tensile Strength: Ultimate (UTS), MPa 570
200 to 540
Tensile Strength: Yield (Proof), MPa 300
100 to 490

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 1180
200
Melting Completion (Liquidus), °C 1510
640
Melting Onset (Solidus), °C 1430
500
Specific Heat Capacity, J/kg-K 490
880
Thermal Conductivity, W/m-K 17
120
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
90

Otherwise Unclassified Properties

Base Metal Price, % relative 12
11
Calomel Potential, mV -230
-600
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 2.4
8.3
Embodied Energy, MJ/kg 35
150
Embodied Water, L/kg 150
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
20 to 68
Resilience: Unit (Modulus of Resilience), kJ/m3 230
70 to 1680
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
46
Strength to Weight: Axial, points 21
18 to 50
Strength to Weight: Bending, points 20
25 to 49
Thermal Diffusivity, mm2/s 4.6
46
Thermal Shock Resistance, points 19
8.6 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
90.7 to 94.7
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 23 to 27
0 to 0.1
Copper (Cu), % 0
3.8 to 4.9
Iron (Fe), % 69.2 to 77
0 to 0.5
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 1.5
0.3 to 0.9
Nickel (Ni), % 0 to 0.75
0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15