MakeItFrom.com
Menu (ESC)

AISI 446 Stainless Steel vs. EN 1.4525 Stainless Steel

Both AISI 446 stainless steel and EN 1.4525 stainless steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 446 stainless steel and the bottom bar is EN 1.4525 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23
5.6 to 13
Fatigue Strength, MPa 200
480 to 540
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
76
Tensile Strength: Ultimate (UTS), MPa 570
1030 to 1250
Tensile Strength: Yield (Proof), MPa 300
840 to 1120

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 440
430
Maximum Temperature: Mechanical, °C 1180
860
Melting Completion (Liquidus), °C 1510
1430
Melting Onset (Solidus), °C 1430
1390
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 17
18
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
13
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.4
2.8
Embodied Energy, MJ/kg 35
39
Embodied Water, L/kg 150
130

Common Calculations

PREN (Pitting Resistance) 27
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
68 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 230
1820 to 3230
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
25
Strength to Weight: Axial, points 21
36 to 45
Strength to Weight: Bending, points 20
29 to 33
Thermal Diffusivity, mm2/s 4.6
4.7
Thermal Shock Resistance, points 19
34 to 41

Alloy Composition

Carbon (C), % 0 to 0.2
0 to 0.070
Chromium (Cr), % 23 to 27
15 to 17
Copper (Cu), % 0
2.5 to 4.0
Iron (Fe), % 69.2 to 77
70.4 to 79
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0 to 0.75
3.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0 to 0.25
0 to 0.050
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.025