MakeItFrom.com
Menu (ESC)

AISI 446 Stainless Steel vs. EN 2.4633 Nickel

AISI 446 stainless steel belongs to the iron alloys classification, while EN 2.4633 nickel belongs to the nickel alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 446 stainless steel and the bottom bar is EN 2.4633 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
34
Fatigue Strength, MPa 200
230
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
76
Shear Strength, MPa 360
510
Tensile Strength: Ultimate (UTS), MPa 570
760
Tensile Strength: Yield (Proof), MPa 300
310

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Mechanical, °C 1180
1000
Melting Completion (Liquidus), °C 1510
1350
Melting Onset (Solidus), °C 1430
1300
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 17
11
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
50
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.4
8.4
Embodied Energy, MJ/kg 35
120
Embodied Water, L/kg 150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
210
Resilience: Unit (Modulus of Resilience), kJ/m3 230
240
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
24
Strength to Weight: Axial, points 21
26
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 4.6
2.9
Thermal Shock Resistance, points 19
22

Alloy Composition

Aluminum (Al), % 0
1.8 to 2.4
Carbon (C), % 0 to 0.2
0.15 to 0.25
Chromium (Cr), % 23 to 27
24 to 26
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 69.2 to 77
8.0 to 11
Manganese (Mn), % 0 to 1.5
0 to 0.5
Nickel (Ni), % 0 to 0.75
58.8 to 65.9
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0.1 to 0.2
Yttrium (Y), % 0
0.050 to 0.12
Zirconium (Zr), % 0
0.010 to 0.1