MakeItFrom.com
Menu (ESC)

AISI 446 Stainless Steel vs. Grade 9 Titanium

AISI 446 stainless steel belongs to the iron alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 446 stainless steel and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
11 to 17
Fatigue Strength, MPa 200
330 to 480
Poisson's Ratio 0.27
0.32
Reduction in Area, % 50
28
Shear Modulus, GPa 79
40
Shear Strength, MPa 360
430 to 580
Tensile Strength: Ultimate (UTS), MPa 570
700 to 960
Tensile Strength: Yield (Proof), MPa 300
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 1180
330
Melting Completion (Liquidus), °C 1510
1640
Melting Onset (Solidus), °C 1430
1590
Specific Heat Capacity, J/kg-K 490
550
Thermal Conductivity, W/m-K 17
8.1
Thermal Expansion, µm/m-K 11
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 12
37
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.4
36
Embodied Energy, MJ/kg 35
580
Embodied Water, L/kg 150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 230
1380 to 3220
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
35
Strength to Weight: Axial, points 21
43 to 60
Strength to Weight: Bending, points 20
39 to 48
Thermal Diffusivity, mm2/s 4.6
3.3
Thermal Shock Resistance, points 19
52 to 71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.2
0 to 0.080
Chromium (Cr), % 23 to 27
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 69.2 to 77
0 to 0.25
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 0 to 0.75
0
Nitrogen (N), % 0 to 0.25
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4