MakeItFrom.com
Menu (ESC)

AISI 446 Stainless Steel vs. C42200 Brass

AISI 446 stainless steel belongs to the iron alloys classification, while C42200 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 446 stainless steel and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
2.0 to 46
Poisson's Ratio 0.27
0.33
Rockwell B Hardness 84
56 to 87
Shear Modulus, GPa 79
42
Shear Strength, MPa 360
210 to 350
Tensile Strength: Ultimate (UTS), MPa 570
300 to 610
Tensile Strength: Yield (Proof), MPa 300
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 1180
170
Melting Completion (Liquidus), °C 1510
1040
Melting Onset (Solidus), °C 1430
1020
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 17
130
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
32

Otherwise Unclassified Properties

Base Metal Price, % relative 12
29
Density, g/cm3 7.7
8.6
Embodied Carbon, kg CO2/kg material 2.4
2.7
Embodied Energy, MJ/kg 35
44
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 230
49 to 1460
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 26
19
Strength to Weight: Axial, points 21
9.5 to 19
Strength to Weight: Bending, points 20
11 to 18
Thermal Diffusivity, mm2/s 4.6
39
Thermal Shock Resistance, points 19
10 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 23 to 27
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 69.2 to 77
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 0 to 0.75
0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.8 to 1.4
Zinc (Zn), % 0
8.7 to 13.2
Residuals, % 0
0 to 0.5