MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. ACI-ASTM CE3MN Steel

Both ASTM A182 grade F122 and ACI-ASTM CE3MN steel are iron alloys. Both are furnished in the normalized and tempered condition. They have 74% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is ACI-ASTM CE3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 23
20
Fatigue Strength, MPa 320
380
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
81
Tensile Strength: Ultimate (UTS), MPa 710
770
Tensile Strength: Yield (Proof), MPa 450
590

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Mechanical, °C 600
1100
Melting Completion (Liquidus), °C 1490
1450
Melting Onset (Solidus), °C 1440
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 24
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
21
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
4.2
Embodied Energy, MJ/kg 44
58
Embodied Water, L/kg 100
180

Common Calculations

PREN (Pitting Resistance) 17
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
140
Resilience: Unit (Modulus of Resilience), kJ/m3 520
840
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
27
Strength to Weight: Bending, points 22
24
Thermal Diffusivity, mm2/s 6.4
4.1
Thermal Shock Resistance, points 19
21

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0 to 0.030
Chromium (Cr), % 10 to 11.5
24 to 26
Copper (Cu), % 0.3 to 1.7
0
Iron (Fe), % 81.3 to 87.7
58.1 to 65.9
Manganese (Mn), % 0 to 0.7
0 to 1.5
Molybdenum (Mo), % 0.25 to 0.6
4.0 to 5.0
Nickel (Ni), % 0 to 0.5
6.0 to 8.0
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0.1 to 0.3
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.040
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zirconium (Zr), % 0 to 0.010
0