MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. AWS E80C-B6

Both ASTM A182 grade F122 and AWS E80C-B6 are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is AWS E80C-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
19
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
74
Tensile Strength: Ultimate (UTS), MPa 710
630
Tensile Strength: Yield (Proof), MPa 450
530

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Melting Completion (Liquidus), °C 1490
1450
Melting Onset (Solidus), °C 1440
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 24
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
4.7
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.8
Embodied Energy, MJ/kg 44
25
Embodied Water, L/kg 100
71

Common Calculations

PREN (Pitting Resistance) 17
7.1
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
120
Resilience: Unit (Modulus of Resilience), kJ/m3 520
730
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
22
Strength to Weight: Bending, points 22
21
Thermal Diffusivity, mm2/s 6.4
11
Thermal Shock Resistance, points 19
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0 to 0.1
Chromium (Cr), % 10 to 11.5
4.5 to 6.0
Copper (Cu), % 0.3 to 1.7
0 to 0.35
Iron (Fe), % 81.3 to 87.7
90.1 to 94.4
Manganese (Mn), % 0 to 0.7
0.4 to 1.0
Molybdenum (Mo), % 0.25 to 0.6
0.45 to 0.65
Nickel (Ni), % 0 to 0.5
0 to 0.6
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.5
0.25 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.025
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0 to 0.030
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.5