MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. EN 1.6554 Steel

Both ASTM A182 grade F122 and EN 1.6554 steel are iron alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is EN 1.6554 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
230 to 280
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
17 to 21
Fatigue Strength, MPa 320
380 to 520
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 710
780 to 930
Tensile Strength: Yield (Proof), MPa 450
550 to 790

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 600
420
Melting Completion (Liquidus), °C 1490
1460
Melting Onset (Solidus), °C 1440
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 24
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 12
3.4
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.7
Embodied Energy, MJ/kg 44
22
Embodied Water, L/kg 100
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 520
810 to 1650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
27 to 33
Strength to Weight: Bending, points 22
24 to 27
Thermal Diffusivity, mm2/s 6.4
11
Thermal Shock Resistance, points 19
23 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0.23 to 0.28
Chromium (Cr), % 10 to 11.5
0.7 to 0.9
Copper (Cu), % 0.3 to 1.7
0 to 0.3
Iron (Fe), % 81.3 to 87.7
94.6 to 97.3
Manganese (Mn), % 0 to 0.7
0.6 to 0.9
Molybdenum (Mo), % 0.25 to 0.6
0.2 to 0.3
Nickel (Ni), % 0 to 0.5
1.0 to 2.0
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.025
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0 to 0.030
Zirconium (Zr), % 0 to 0.010
0