MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. Grade 5 Titanium

ASTM A182 grade F122 belongs to the iron alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 23
8.6 to 11
Fatigue Strength, MPa 320
530 to 630
Poisson's Ratio 0.28
0.32
Reduction in Area, % 45
21 to 25
Shear Modulus, GPa 76
40
Shear Strength, MPa 450
600 to 710
Tensile Strength: Ultimate (UTS), MPa 710
1000 to 1190
Tensile Strength: Yield (Proof), MPa 450
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 600
330
Melting Completion (Liquidus), °C 1490
1610
Melting Onset (Solidus), °C 1440
1650
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 24
6.8
Thermal Expansion, µm/m-K 13
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 12
36
Density, g/cm3 8.0
4.4
Embodied Carbon, kg CO2/kg material 3.0
38
Embodied Energy, MJ/kg 44
610
Embodied Water, L/kg 100
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 520
3980 to 5880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 25
62 to 75
Strength to Weight: Bending, points 22
50 to 56
Thermal Diffusivity, mm2/s 6.4
2.7
Thermal Shock Resistance, points 19
76 to 91

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.020
5.5 to 6.8
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0 to 0.080
Chromium (Cr), % 10 to 11.5
0
Copper (Cu), % 0.3 to 1.7
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 81.3 to 87.7
0 to 0.4
Manganese (Mn), % 0 to 0.7
0
Molybdenum (Mo), % 0.25 to 0.6
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
87.4 to 91
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.4