MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. Nickel 333

ASTM A182 grade F122 belongs to the iron alloys classification, while nickel 333 belongs to the nickel alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 23
34
Fatigue Strength, MPa 320
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
81
Shear Strength, MPa 450
420
Tensile Strength: Ultimate (UTS), MPa 710
630
Tensile Strength: Yield (Proof), MPa 450
270

Thermal Properties

Latent Heat of Fusion, J/g 270
320
Maximum Temperature: Mechanical, °C 600
1010
Melting Completion (Liquidus), °C 1490
1460
Melting Onset (Solidus), °C 1440
1410
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 24
11
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 12
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
55
Density, g/cm3 8.0
8.5
Embodied Carbon, kg CO2/kg material 3.0
8.5
Embodied Energy, MJ/kg 44
120
Embodied Water, L/kg 100
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
170
Resilience: Unit (Modulus of Resilience), kJ/m3 520
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 25
21
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 6.4
2.9
Thermal Shock Resistance, points 19
16

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0 to 0.1
Chromium (Cr), % 10 to 11.5
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 0.3 to 1.7
0
Iron (Fe), % 81.3 to 87.7
9.3 to 24.5
Manganese (Mn), % 0 to 0.7
0 to 2.0
Molybdenum (Mo), % 0.25 to 0.6
2.5 to 4.0
Nickel (Ni), % 0 to 0.5
44 to 48
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 1.5
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.5
2.5 to 4.0
Vanadium (V), % 0.15 to 0.3
0
Zirconium (Zr), % 0 to 0.010
0