MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. C92800 Bronze

ASTM A182 grade F122 belongs to the iron alloys classification, while C92800 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is C92800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 23
1.0
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 76
37
Tensile Strength: Ultimate (UTS), MPa 710
280
Tensile Strength: Yield (Proof), MPa 450
210

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 600
140
Melting Completion (Liquidus), °C 1490
960
Melting Onset (Solidus), °C 1440
820
Specific Heat Capacity, J/kg-K 470
350
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 12
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
36
Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 3.0
4.1
Embodied Energy, MJ/kg 44
67
Embodied Water, L/kg 100
430

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 520
210
Stiffness to Weight: Axial, points 14
6.4
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 25
8.8
Strength to Weight: Bending, points 22
11
Thermal Shock Resistance, points 19
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.020
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0
Chromium (Cr), % 10 to 11.5
0
Copper (Cu), % 0.3 to 1.7
78 to 82
Iron (Fe), % 81.3 to 87.7
0 to 0.2
Lead (Pb), % 0
4.0 to 6.0
Manganese (Mn), % 0 to 0.7
0
Molybdenum (Mo), % 0.25 to 0.6
0
Nickel (Ni), % 0 to 0.5
0 to 0.8
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0 to 1.5
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.010
0 to 0.050
Tin (Sn), % 0
15 to 17
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
0 to 0.8
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.7