MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. S35500 Stainless Steel

Both ASTM A182 grade F122 and S35500 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is S35500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
14
Fatigue Strength, MPa 320
690 to 730
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 450
810 to 910
Tensile Strength: Ultimate (UTS), MPa 710
1330 to 1490
Tensile Strength: Yield (Proof), MPa 450
1200 to 1280

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Mechanical, °C 600
870
Melting Completion (Liquidus), °C 1490
1460
Melting Onset (Solidus), °C 1440
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 24
16
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
16
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
3.5
Embodied Energy, MJ/kg 44
47
Embodied Water, L/kg 100
130

Common Calculations

PREN (Pitting Resistance) 17
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 520
3610 to 4100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
47 to 53
Strength to Weight: Bending, points 22
34 to 37
Thermal Diffusivity, mm2/s 6.4
4.4
Thermal Shock Resistance, points 19
44 to 49

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0.1 to 0.15
Chromium (Cr), % 10 to 11.5
15 to 16
Copper (Cu), % 0.3 to 1.7
0
Iron (Fe), % 81.3 to 87.7
73.2 to 77.7
Manganese (Mn), % 0 to 0.7
0.5 to 1.3
Molybdenum (Mo), % 0.25 to 0.6
2.5 to 3.2
Nickel (Ni), % 0 to 0.5
4.0 to 5.0
Niobium (Nb), % 0.040 to 0.1
0.1 to 0.5
Nitrogen (N), % 0.040 to 0.1
0.070 to 0.13
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zirconium (Zr), % 0 to 0.010
0