MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. 296.0 Aluminum

ASTM A182 grade F23 belongs to the iron alloys classification, while 296.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is 296.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
75 to 90
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 22
3.2 to 7.1
Fatigue Strength, MPa 320
47 to 70
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Tensile Strength: Ultimate (UTS), MPa 570
260 to 270
Tensile Strength: Yield (Proof), MPa 460
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 450
170
Melting Completion (Liquidus), °C 1500
630
Melting Onset (Solidus), °C 1450
540
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 41
130 to 150
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
33 to 37
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
99 to 110

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
11
Density, g/cm3 8.0
3.0
Embodied Carbon, kg CO2/kg material 2.5
7.8
Embodied Energy, MJ/kg 36
150
Embodied Water, L/kg 59
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
7.6 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 550
110 to 220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 20
24 to 25
Strength to Weight: Bending, points 19
30 to 31
Thermal Diffusivity, mm2/s 11
51 to 56
Thermal Shock Resistance, points 17
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.030
89 to 94
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 1.9 to 2.6
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 93.2 to 96.2
0 to 1.2
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.1 to 0.6
0 to 0.35
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
0 to 0.35
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
2.0 to 3.0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.0050 to 0.060
0 to 0.25
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.35