MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. ACI-ASTM CA15M Steel

Both ASTM A182 grade F23 and ACI-ASTM CA15M steel are iron alloys. They have 89% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is ACI-ASTM CA15M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
210
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
20
Fatigue Strength, MPa 320
330
Poisson's Ratio 0.29
0.28
Reduction in Area, % 46
34
Shear Modulus, GPa 74
76
Tensile Strength: Ultimate (UTS), MPa 570
690
Tensile Strength: Yield (Proof), MPa 460
510

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 450
760
Melting Completion (Liquidus), °C 1500
1450
Melting Onset (Solidus), °C 1450
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 41
27
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
7.5
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.5
2.1
Embodied Energy, MJ/kg 36
29
Embodied Water, L/kg 59
100

Common Calculations

PREN (Pitting Resistance) 5.7
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
130
Resilience: Unit (Modulus of Resilience), kJ/m3 550
670
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 11
7.2
Thermal Shock Resistance, points 17
25

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0 to 0.15
Chromium (Cr), % 1.9 to 2.6
11.5 to 14
Iron (Fe), % 93.2 to 96.2
82.1 to 88.4
Manganese (Mn), % 0.1 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.050 to 0.3
0.15 to 1.0
Nickel (Ni), % 0 to 0.4
0 to 1.0
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.65
Sulfur (S), % 0 to 0.010
0 to 0.040
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0