MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. ACI-ASTM CN3M Steel

Both ASTM A182 grade F23 and ACI-ASTM CN3M steel are iron alloys. They have 51% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is ACI-ASTM CN3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
140
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
34
Fatigue Strength, MPa 320
150
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
80
Tensile Strength: Ultimate (UTS), MPa 570
500
Tensile Strength: Yield (Proof), MPa 460
190

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 450
1100
Melting Completion (Liquidus), °C 1500
1450
Melting Onset (Solidus), °C 1450
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
13
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
31
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 2.5
5.9
Embodied Energy, MJ/kg 36
80
Embodied Water, L/kg 59
200

Common Calculations

PREN (Pitting Resistance) 5.7
38
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
130
Resilience: Unit (Modulus of Resilience), kJ/m3 550
89
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
17
Strength to Weight: Bending, points 19
17
Thermal Diffusivity, mm2/s 11
3.4
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0 to 0.030
Chromium (Cr), % 1.9 to 2.6
20 to 22
Iron (Fe), % 93.2 to 96.2
42.4 to 52.5
Manganese (Mn), % 0.1 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.050 to 0.3
4.5 to 5.5
Nickel (Ni), % 0 to 0.4
23 to 27
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0