MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. AISI 405 Stainless Steel

Both ASTM A182 grade F23 and AISI 405 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is AISI 405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
22
Fatigue Strength, MPa 320
130
Poisson's Ratio 0.29
0.28
Reduction in Area, % 46
51
Shear Modulus, GPa 74
76
Shear Strength, MPa 360
300
Tensile Strength: Ultimate (UTS), MPa 570
470
Tensile Strength: Yield (Proof), MPa 460
200

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 450
820
Melting Completion (Liquidus), °C 1500
1530
Melting Onset (Solidus), °C 1450
1480
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 41
30
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
7.0
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.5
2.0
Embodied Energy, MJ/kg 36
28
Embodied Water, L/kg 59
100

Common Calculations

PREN (Pitting Resistance) 5.7
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
84
Resilience: Unit (Modulus of Resilience), kJ/m3 550
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
17
Strength to Weight: Bending, points 19
17
Thermal Diffusivity, mm2/s 11
8.1
Thermal Shock Resistance, points 17
16

Alloy Composition

Aluminum (Al), % 0 to 0.030
0.1 to 0.3
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0 to 0.080
Chromium (Cr), % 1.9 to 2.6
11.5 to 14.5
Iron (Fe), % 93.2 to 96.2
82.5 to 88.4
Manganese (Mn), % 0.1 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
0 to 0.6
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0