MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. EN 1.4615 Stainless Steel

Both ASTM A182 grade F23 and EN 1.4615 stainless steel are iron alloys. They have 71% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is EN 1.4615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
150
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
50
Fatigue Strength, MPa 320
190
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
76
Shear Strength, MPa 360
360
Tensile Strength: Ultimate (UTS), MPa 570
500
Tensile Strength: Yield (Proof), MPa 460
200

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 450
840
Melting Completion (Liquidus), °C 1500
1400
Melting Onset (Solidus), °C 1450
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 41
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
13
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.5
2.8
Embodied Energy, MJ/kg 36
40
Embodied Water, L/kg 59
140

Common Calculations

PREN (Pitting Resistance) 5.7
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
200
Resilience: Unit (Modulus of Resilience), kJ/m3 550
99
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 11
4.1
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0 to 0.030
Chromium (Cr), % 1.9 to 2.6
14 to 16
Copper (Cu), % 0
2.0 to 4.0
Iron (Fe), % 93.2 to 96.2
63.1 to 72.5
Manganese (Mn), % 0.1 to 0.6
7.0 to 9.0
Molybdenum (Mo), % 0.050 to 0.3
0 to 0.8
Nickel (Ni), % 0 to 0.4
4.5 to 6.0
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0.020 to 0.060
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0