MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. EN 1.6220 Steel

Both ASTM A182 grade F23 and EN 1.6220 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is EN 1.6220 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
23 to 25
Fatigue Strength, MPa 320
240 to 250
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Tensile Strength: Ultimate (UTS), MPa 570
550 to 580
Tensile Strength: Yield (Proof), MPa 460
340

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 450
400
Melting Completion (Liquidus), °C 1500
1460
Melting Onset (Solidus), °C 1450
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
52
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
2.1
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.5
1.5
Embodied Energy, MJ/kg 36
19
Embodied Water, L/kg 59
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 550
300 to 310
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
19 to 20
Strength to Weight: Bending, points 19
19 to 20
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 17
16 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0.17 to 0.23
Chromium (Cr), % 1.9 to 2.6
0
Iron (Fe), % 93.2 to 96.2
96.7 to 98.8
Manganese (Mn), % 0.1 to 0.6
1.0 to 1.6
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
0 to 0.8
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0