MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. EN AC-21100 Aluminum

ASTM A182 grade F23 belongs to the iron alloys classification, while EN AC-21100 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is EN AC-21100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 22
6.2 to 7.3
Fatigue Strength, MPa 320
79 to 87
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Tensile Strength: Ultimate (UTS), MPa 570
340 to 350
Tensile Strength: Yield (Proof), MPa 460
210 to 240

Thermal Properties

Latent Heat of Fusion, J/g 250
390
Maximum Temperature: Mechanical, °C 450
170
Melting Completion (Liquidus), °C 1500
670
Melting Onset (Solidus), °C 1450
550
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 41
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
34
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
100

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
11
Density, g/cm3 8.0
3.0
Embodied Carbon, kg CO2/kg material 2.5
8.0
Embodied Energy, MJ/kg 36
150
Embodied Water, L/kg 59
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
19 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 550
300 to 400
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 20
31 to 33
Strength to Weight: Bending, points 19
36 to 37
Thermal Diffusivity, mm2/s 11
48
Thermal Shock Resistance, points 17
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.030
93.4 to 95.7
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 1.9 to 2.6
0
Copper (Cu), % 0
4.2 to 5.2
Iron (Fe), % 93.2 to 96.2
0 to 0.19
Manganese (Mn), % 0.1 to 0.6
0 to 0.55
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.18
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.0050 to 0.060
0.15 to 0.3
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1