MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. C12500 Copper

ASTM A182 grade F23 belongs to the iron alloys classification, while C12500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is C12500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 22
1.5 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 360
150 to 220
Tensile Strength: Ultimate (UTS), MPa 570
220 to 420
Tensile Strength: Yield (Proof), MPa 460
75 to 390

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 450
200
Melting Completion (Liquidus), °C 1500
1080
Melting Onset (Solidus), °C 1450
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 41
350
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
92
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
93

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
31
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 2.5
2.6
Embodied Energy, MJ/kg 36
41
Embodied Water, L/kg 59
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
5.6 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 550
24 to 660
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
6.9 to 13
Strength to Weight: Bending, points 19
9.1 to 14
Thermal Diffusivity, mm2/s 11
100
Thermal Shock Resistance, points 17
7.8 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.030
0
Antimony (Sb), % 0
0 to 0.0030
Arsenic (As), % 0
0 to 0.012
Bismuth (Bi), % 0
0 to 0.0030
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 1.9 to 2.6
0
Copper (Cu), % 0
99.88 to 100
Iron (Fe), % 93.2 to 96.2
0
Lead (Pb), % 0
0 to 0.0040
Manganese (Mn), % 0.1 to 0.6
0
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
0 to 0.050
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0
0 to 0.025
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0
Residuals, % 0
0 to 0.3